Solar Mass Ejection Imager (SMEI): First results & Future Capabilities

D.F. Webb & D.R. Mizuno

Also: J.B. Mozer, R.R. Radick, J.C. Johnston, S.D. Price, T. Kuchar, B.V. Jackson, A. Buffington, S.J. Tappin, G.M. Simnett

U.S. Air Force Research Laboratory University of California at San Diego University of Birmingham in England Boston College

http://www.vs.afrl.af.mil/Division/VSBX/SMEI.html http://smei.nso.edu

Financial support provided by the Air Force, the University of Birmingham and NASA.

Outline

- SMEI Goals re CMEs
 SW Forecasting & Understanding
- How Maps Constructed
- Examples of CMEs:

 Limb, Halo, Multiple
 Solar Origins; Distance-Time plots
- First Statistical Results on CMEs: Rates, Brightnesses, Spans, Speeds, Distances
- Future Data Analyses & Collaborations

FORECASTING WITH SMEI

CMEs and GEOMAGNETIC STORMS:

CMEs cause all large storms.

Fast CMEs drive IP shocks; Shocks produce SEPs.

Our ability to forecast storms is poor.

Most storms not forecast and most forecasts are false alarms.

Basic Space Weather problem:

Need trajectory, timing & strength of CME Will CME hit head-on, graze or miss Earth?

Time of arrival of Shock, dense structures Predict strength of storm

Solar Mass Ejection Imager (SMEI)

- **S** Proof-of-concept AF experiment
- **S** Launched by AF STP
- S Cost: Approx \$10M
- **S** Tracking CMEs from Sun to Earth
- **S** First-ever capability
- S All-sky view, updated every orbit
- Need to detect signal at 1% of background (zodiacal light & stars)

SMEI on Coriolis Mission

Launched 6 Jan 2003 Vandenberg AFB

Since launch SMEI has observed:

- 68 CMEs, and 3-5 Earth-directed (halo) CMEs
- 1 comet (Neat)
- 1 asteroid (Vesta)
- Auroral light when Kp>4

Experiment Schedule

 YEAR 1 – Calibration, data processing, develop techniques for tracking CMEs & predicting storms

Data Latency (photon -> CCD -> AFRL) 24 hours

 YEAR 2 – Validate forecasting techniques (post hoc and real-time tests)

Data Latency (original) 6 hours in Years 2 - 5

- YEARS 3 5 Contribute regularly to operational forecasts?
- Challenges:

Camera pointing closest to Sun is 20° warmer than expected. Particle hits obscure large regions of the sky. Fewer telemetry contacts than required for operational forecasts.

SMEI Fields of View

Frame Composite for Aitoff Map

Blue = Cam3; Green = Cam2; Red = Cam1

D290; 17 October 2003

Hammer-Aitoff Projection: "Standard" SMEI View

SMEI Composite All-Sky Image

March 2003

The First SMEI CME!

An Amazing, Long Prominence Eruption!

SOHO EIT 195A

SOHO LASCO C2

Event discussed in earlier talk in SH21C-04 by Hill et al.

Height-Time Plots of NW EPL/CME

A Fast Limb CME

31 May 2003

Speed: LASCO C3 à 1765 km/sec.

SMEI à 1450 km/sec.

CME speeds range from 100 - 2500 km/sec.

Distance-Time Plot of 31 May Limb CME

Example Movie of SMEI CMEs

At least 4 separate CMEs!

Slow, bright, bent arc to NW (Cam 3 into 2; lasts 2 days!) Faint, wide arc over NP 2 wide arcs to E & NW (NOT Halos! Cam 2 into 1)

First Earth-Directed CME Seen by SMEI 29-30 May 2003

Tappin et al., GRL, in press, 2003

Movie of Late May Halo CME: SMEI Cams 2 + 1

2003/85/29 82:29 UT

Courtesy: B. Jackson & A. Buffington, UCSD

Distance-Time Plot of May Halo CME

1st of Recent Halo CMEs

SOHO LASCO C3: Oct. 22

X17 Flare/CMEs X10

Oct. 28 EIT 195A EIT 2003/10/28 07:25

EIT 2003/10/29 19:05

Oct. 28 LASCO C2

Oct. 29 LASCO C2 (Diff.)

Oct. 29

EIT 195A

FaAGU, 11 Dec 03

Oct. 22 Halo CME Seen by SMEI

Halo CME Movie

Oct. 28 Fast Halo CME seen by SMEI

Difference image of 2 parts of halo on Oct. 29, 02:10 UT.

Angular Distance vs Time of Recent Halo CMEs seen by SMEI

Distance vs time plot of 2 parts of Oct. 22-23 CME in SMEI; F= flare onset, EP= erupting prominence, C2 & C3= top of CME in SOHO LASCO coronagraphs.

Distance vs time plot of 2 parts of Oct. 28 CME in SMEI; F, C2 & C3 as before.

Travel Times of 3 Geoeff. Halo CMEs

Date/Event 2003	Flare Onset at Sun (UT)	1 st SMEI Obs. (hours)	Shock at Earth (hr.)	Shock- SMEI (hr.)
May 27-28 - X1, X4				
	23, 00	+19,31	+42	+23,+11
Oct. 22 - M4	>05:00	+37	+58	+21
Oct. 28 - X17	11:00	+9	+19	+10
Oct. 29 - X10	21:00	(no data)	+19.5	

Conclusion: SMEI first detected 3 Earthward CMEs 10 – 23 hr. before shock arrivals at 1 AU.

Summary of Early Results: SMEI CMEs

- 68 CMEs Observed; 5 Feb. 30 Nov. 2003
 298 total d 53.5 no obs. d = 244.5 obs. Days
 Occurrence rate = 0.28 CMEs/day
- Morphology: More structured nearer Sun (Cam 3) & broad arcs far from Sun (Cams 2, 1)
- SMEI vs LASCO: 36 (of 68) SMEI CMEs compared: 17 assoc. with LASCO CMEs; 3 not; 16 ???
- Brightness: Mean = 1.3 adu; Range = 0.2-6.0 adu Equiv. to 0.6 \$10 units (Range 0.1-3.0 \$10)
- Spans (detected): Mean = 43° ; Range = $11 107^{\circ}$
- Speeds (linear fits projected on skyplane):
 Range = 330 3555 km/sec

Angular Distance when CMEs First Detected by SMEI

So, most CMEs are first observed 20-60° from Sun.

Bright SMEI Aurora: 29-30 May 2003

29, 20:00

29, 23:22

SMEI Data

Required Processing

- Remove cosmic rays & hot CCD pixels
- Remove stars: 2 methods being used
- Remove a zodiacal cloud model
- Normalize radial brightness

Final Archives; End Products

- Heliospheric Sky Maps
- 3-D Model Reconstructions
- Zodiacal Cloud
- Stellar Time Series: Novae, Variable stars,
- Planetary transits
- Comets & Near-Earth Objects

CMEs in 3D using Reconstruction

SMEI Thomson-scattering data with model of solar wind kinematics used in a reconstruction inversion to infer 3D structure of CMEs & other regions of enhanced density.

Example of reconstruction using SMEI data in May-June 2003 (B. Jackson, UCSD)

Conclusions

- SMEI has observed 68 CMEs:
 - Rate: 0.3/day; Brightness: ~1 S10; Spans: >43°
- CMEs more structured near Sun (like in LASCO); broad & arc-like far from Sun.
- SMEI detected 3 geoeffective halo CMEs at ~1/3 of Sun to Earth distance.
 - -Proof of principal that SMEI can detect even fast Earthward CMEs < 1d before arrival.
 - -New tool for early warning of storms.
- SMEI also has detected a comet, asteroids & auroral light
- Future Analyses & Collaborations:
 Improved calibrations & Reprocessing
 Tomography of CMEs & Corotating Structures

We Encourage Collaborations! Contact any of us.